Safe radioactive waste disposal: from vision to practice

Barbara Pastina
Saanio & Riekkola Oy
Spent fuel management organisation

AUTHORISATIONS
Ministry of Employment and Economy (TEM)

OVERSIGHT
Säteilyturvakeskus (STUK)

RAD WASTE MANAGEMENT FUNDING
Nuclear waste fund managed by TEM

Consulting firms, research institutes (e.g. VTT), universities
Status of spent nuclear fuel management in Finland

Total: 9000tU of SNF
4500 canisters
800-900 W/tU after 30y
Olkiluoto spent nuclear fuel repository
The KBS-3 method

- Sites: Olkiluoto (Finland), Forsmark (Sweden)
- Granitic host rock
- Depth 400-500 m
- Reducing conditions

KBS-3V KBS-3H
System understanding
• Site
• Waste streams
• FEPs

Legal requirements & other constraints

Site characterisation, design & technical development

Disposal method

Design & technical development

Safety case

Next stage

Safety assessment
Finnish safety case

- Safety case for KBS-3V design (main)
 - Safety case for KBS-3H design (alternative) joint project with SKB
- Both developed according to the Nuclear Energy Agency and IAEA guidelines
- Structured as a report "portfolio"
Complementary Considerations

Assessment of Radionuclide Release Scenarios for the Repository System

<table>
<thead>
<tr>
<th>Models and Data for the Repository System</th>
<th>Biosphere Assessment Data Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosphere Assessment: Modelling reports</td>
<td></td>
</tr>
<tr>
<td>Assessment of Radionuclide Release Scenarios for the Repository System</td>
<td>Biosphere Assessment</td>
</tr>
<tr>
<td>Complementary Considerations</td>
<td></td>
</tr>
</tbody>
</table>

3238 pages not including the supporting reports

- Safety case portfolio reports
- Main supporting reports
Lessons learned in geologic disposal of SNF

- Integrate site characterisation data (above and below ground) iteratively in repository layout and in safety case
- Apply a step-wise approach for the R&D programme
- Establish & manage the requirements early on
- Communicate effectively among site characterisation, repository design and long-term safety
Incorporating site data into the safety case
Lessons learned from the site selection process

• The site selection process approach should be stepwise and systematic in the early phases.
• Stepwise means that the results of the earlier phases are used to guide the investigations in the next steps.
• Focus on more site-specific features for the last sites.
• The suitability of the final site must be confirmed by underground investigations.
 – Ideally using an underground characterisation facility, as in Finland (ONKALO).
From site characterisation to Host Rock Classification
Lessons learned on management and cost estimates

- Understanding the interaction between design, costs and safety is essential
- Cost estimates should begin in the very early phase
- Cost estimates should be always in real-time
- Cost estimates show where to concentrate resources from the cost point of view
- Cost estimates are one of the tools for a successful project management
Case of Russian Federation geologic disposal programme

- Vitrified HLW (decay heat <1MWt/m3)
- HLW (low decay heat) and ILW
- Example of a multi-purpose repository
- Conceptual repository layout shown as example in the next slide…
- **80 m**: Decommissioning Waste Repository (Large Scale Components)

- **195 m**: Low & Intermediate Level Waste (LILW) Repository

- **315 m**: Underground Research Laboratory (URL) and Demonstration Tunnels

- **470 m**: Vitrified HLW (class 1)

Saanio & Riekkola, 16.9.2013
Saanio & Riekkola know-how related to the disposal of radioactive waste

Repository Technology
- Technical design of nuclear waste repositories
- Layout adaptation to site specific conditions
- Description of operation
- Management of technical requirements
- Backfilling technology
- Environmental impact analysis
- Cost estimates of the repositories

Design
- Main design
- Layout design
- HVAC design
- Project development
- Structural design
Saanio & Riekkola know-how related to the disposal of radioactive waste

Long-Term Safety

- Management of safety requirements
- Integration of site and engineered barrier system into long-term safety assessment
- Features, events and processes
- Performance assessment
- Formulation of radionuclide release scenarios
- Complementary considerations (e.g. natural analogues)
- Planning and management of safety case
Saanio & Riekkola know-how related to the disposal of radioactive waste

Rock Engineering Department
- Rock mechanical analyses
- Risk analyses
- Time schedules and cost estimates
- Life cycle analyses of rock caverns
- Geological modeling
- Rock engineering mapping
- Groundwater flow modeling
- Groundwater analysis
- Inflow analysis
- Estimations for sealing requirement
- Planning and management of monitoring measurements
Saanio & Riekkola know-how related to the disposal of radioactive waste

Bentonite laboratory (B+Tech Oy)

- Research and development on clay-based engineered barriers for spent nuclear fuel disposal.
- Specialised clay laboratory and experimental facilities
- Modeling capabilities to study clay-based barriers
- Detailed information is provided at www.btech.fi.
Major Clients and References – Nuclear Waste

• Posiva (Finland), URL (Onkalo) and HLW disposal facility
• TVO (Finland), LILW disposal facility
• SKB (Sweden), HLW disposal facility
• KEPCO E&C/KRMC (Korea), LILW disposal facility
• KAERI (Korea), URL and HLW disposal facility
Thank you!

Contact:

Timo Saanio
Vice President
timo.saanio@sroy.fi
tel. +358 09 566 6500 (office)
+358 40 506 5671 (mobile)
Repository design and site characterisation reports

- WR 2012-50 Repository design 2012
- POSIVA 2012-19 Design, Production and Initial state of the Underground Disposal Facility Closure
- WR 2011-32 Foreign Materials in the Repository - Update of Estimated Quantities
- WR 2010-17 Drilling and Associated Drillhole Measurements of the Investigation Holes in the EDZ Tunnel at Chainage 3620
- WR 2008-83 Assessment of the Potential for Rock Spalling at the Olkiluoto Site

www.posiva.fi
KBS-3V Safety Case Reports

- POSIVA 2012-12 Synthesis report
- POSIVA 2011-02 Olkiluoto Site Description 2011
- POSIVA 2012-04 Performance Assessment 2012
- POSIVA 2012-05 Description of the Disposal System 2012
- POSIVA 2012-06 Olkiluoto Biosphere Description 2012
- POSIVA 2012-07 Features, Events and Processes 2012
- POSIVA 2012-08 Formulation of Radionuclide Release Scenarios 2012
- POSIVA 2012-10 Biosphere Assessment BSA-2012
- POSIVA 2012-11 Complementary Considerations 2012
- POSIVA 2013-01 Models and Data for the Repository System 2012

www.posiva.fi
KBS-3H related reports

- POSIVA 2008-01 KBS-3H Design Description 2007
- POSIVA 2007-09 KBS-3H Process report,
- POSIVA 2007-08 KBS-3H Evolution report,
- POSIVA 2007-07 KBS-3H Radionuclide Release and Transport reports
- POSIVA 2007-10 Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto - Complementary evaluations of safety report
- SKB TR 12-01 KBS-3H Complementary studies 2008-2010.

www.posiva.fi
Saanio & Riekkola Oy

• Founded 1962
• Main office in Helsinki, Finland
• Branch office in Seoul, South Korea
• ISO 9001:2008 quality management system
Forsmark HLW
South Korea HLW

Total SF: 36,000 Mt HM
- CANDU: 45%
- PWR: 55%
AREA: approx. 4 km² (2 km x 2 km)
- PWR:CANDU = 19:2 (approx. 10:1)
Wolsong LILW
Service Business Areas of Saanio & Riekkola Oy

- Underground Facilities
- Nuclear Waste Management
- Mining

Technical Consultation Services