Виктория В. Крупская (ИГЕМ РАН, ИБРАЭ РАН)

Применение глин и глинистых материалов для обеспечения безопасности пунктов захоронений радиоактивных отходов

Кристаллохимическое строение глинистых минералов

Кристаллохимическое строение каолинита

http://virtual-museum.soils.wisc.edu/kaolinite/index.html

Кристаллохимическое строение каолинита

Кристаллохимическое строение глинистых минералов

Фото по материалам сайта http://www.minersoc.org

Формирование глинистых минералов в геологических и

техногенных процессах

Промышленное использование бентонитовых глин в охране окружающей среды

Глубинные хранилища радиоактивных отходов (РАО)

www.opg.com/power/nuclear/waste/dgr.asp

Глубинные хранилища радиоактивных отходов (РАО)

Опыт Франции, Andra

Изоляция производится в глины

по материалам сайта: http://imgbuddy.com/nuclear-waste-disposal-underground.asp

Глубинные хранилища радиоактивных отходов (РАО)

Схематическое строение хранилища РАО и его расширение на АЭС «Ловиза»

Схема изоляции радиоактивных отходов в Нижнеканском массиве (по http://www.atomic-energy.ru)

Инженерные бентонитовые барьеры для изоляции РАО

Размещение бентонита в пространстве между контейнерами с отходами и горной породой туннелей позволяет достичь следующего:

- ограничить доступ подземных вод к РАО,
- создать условия, при которых массообмен между РАО и подземными водами возможен лишь посредством диффузии,
- предотвратить поступление радионуклидов в коллоидной форме в подземные воды,
- обеспечить эффективную сорбцию радионуклидов после вероятной разгерметизации контейнера с РАО,
- запечатать открытые трещины и крупные поры в горных породах за счет высокой набухаемости,
- отвести тепло от ВАО в окружающую геологическую среду.

Инженерные бентонитовые барьеры для изоляции РАО

Основными задачами исследований бентонитов для задач сохранения стабильности захоронений РАО является следующее:

- влияние бентонитового буфера на коррозионную устойчивость металлических канистр и РАО;

- зависимость водопроницаемости от плотности бентонита;
- сорбционные свойства бентонитов в отношении радионуклидов;

 изучение диффузии различных радиоизотопов через водонасыщенный бентонит;

- теплопроводность бентонита и способ ее увеличения;

- влияние радиации, повышенной температуры и состава водных растворов на изоляционные свойства бентонита. -В настоящий момент, все современные проекты по изоляции радиоактивных отходов в горных выработках включают инжеренрные барьерные системы на основе природных бентонитовых глин (Brookins, 1984; Chapman, McKinley, 1988; Лаверов и др., 2004; Sellin and Leopin, 2013 и др.)

-Высокие изоляционные свойств бентонитовых (монтмориллонитовых) буферных барьеров: низкая водопроницаемость, высокая сорбционная способность, высокая набухаемость, относительно высокая термическая устойчивость и др.

-Бентониты размещают в пространстве между РАО и стенками горной выработки для предотвращения миграции радионуклидов во внешнюю среду.

-Одна из проблем: сохранении стабильности свойств бентонитовых барьеров в случае термохимического воздействия.

-Основная цель работ: исследование преобразования структуры и адсорбционных свойств монтмориллонита при термохимическом краткосрочном воздействии.

Состав, строение и свойства монтмориллонита

частицы

Микростроение бентонитовых глин (Дашковское месторождение)

Изменения при набухании и диспергировании частиц ММ в воде (по Овчаренко, 1961)

взаимодействующие частицы (водная дисперсия)

астично ориентированные взаимодействующие частицы (вязко-эластический гель)

Состав, строение и свойства монтмориллонита

Взаимодействие частиц в суспензии

Модели взаимодействия частиц монтмориллонита (по Olphen Van, 1977)

Промышленное использование бентонитовых глин в охране окружающей среды

Геосинтетические глинистые материалы (ГСГМ)

10М НNO₃, 5 час. (MM-T)

Природный (Таганский)

разного типа

"Отсутствие контактов

Взаимодействие частиц при термохимическом воздействии

Преобразование структуры при термохимическом воздействии

Преобразование структуры при термохимическом воздействии

		Таганский бентонит			Дашковский бентонит		
		Природ	10M HNO ₃		Природ	10M HNO ₃	
			1 час	5 часов	природ	1 час	5 часов
Гигроскопическая влажность, Wg, %		11.2	22.4	24.9	8.5	7.3	7.3
Емкость катионного обмена	ЕКО <i>,</i> мг*экв/100г	85	26	19	44	34	31
	ЕКО, % от природного		31%	22%		79%	71%
	Потери ЕКО, % от природного		-69%	-78%		-21%	-29%
_	S _{вет,} м ² /г	110.2	125.3	177.7	63.91	80.1	135.44
Площадь удельной поверхности	S _{вет,} % от природного		114%	161%		125%	212%
	Прирост S _{вет,} % от природного		+14%	+61%		+25%	+112%
Коэффициент очистки (К _{оч}), ¹³⁷ Сs		36	117	164	194.9	203	287

Коэффициент очистки: $K_{oy} = \frac{A_{y\partial.hay}}{A_{y\partial.pagh}}$ $A_{yd.hay}$ - начальная удельная активность ¹³⁷Cs $A_{yd.pagh}$ - равновесная удельная активность ¹³⁷Cs

Преобразование глинистых минералов под воздействием растворов кислот

- 1. Вымывание катионов из межслоевых промежутков (в первую очередь Ca, Mg).
- 2. Частичное протонирование межслоевых промежутков.
- 3. Уменьшение размеров частиц и увеличение пористости.
- 4. Модифицирование внешней поверхности и увеличение площади удельной поверхности.
- 5. Вымывание катионов из октаэдрических позиций.
- 6. Разрушение октаэдрической сетки и модификация тетраэдрической сетки
- 7. Разрушение слоя с частичным растворением структуры смектитов

Промышленное использование бентонитовых глин в охране окружающей среды

Environmental Protection System

Natural Soil and Rock

Инженерные бентонитовые барьеры для изоляции РАО

Положение различных буферов в системе захоронения (по Nuclear Waste Management..., 2013)

(d) 50% Wyoming : 50% Sand

Примеры гранул бентонита с разным компонентным составом (по Kim et al., 2012)

Физико-химические свойства бентовых глин

Схематическое изображение структурных изменений при набухании и диспергировании частиц глинистого минерала группы смектитов в воде: а – сильно ориентированные упакованные слои, б - вязко-эластический гель, содержащий сильно взаимодействующие между собой частично ориентированные слои, в – водная дисперсия, содержащая произвольно ориентированные взаимодействующие между собой частично *Овчаренко*, 1961)

Различные модели ассоциации первичных частиц в глинистых суспензиях: а) беспорядочные диспергированные частицы (при концентрациях ниже 0,5%); б) агрегаты с взаимодействием базальная плоскость; в) агрегаты с взаимодействием базальная плоскость; в) агрегаты с взаимодействием базальная плоскость – боковая грань; г) агрегаты с взаимодействием базальная плоскость – боковая грань; г) агрегаты с взаимодействием базальная плоскость – боковая грань; г) агрегаты с взаимодействием боковая грань (по Olphen Van, 1977)

Влияние бентонитового буфера на коррозионную устойчивость металлических канистр и РАО

Преобразования на границе канистра-бентонит (по Chechire et al., 2014)

Изучение образования Н-смектитов в местах захоронения радиоактивных отходов

Диагенетический смектит (Томская область)

«Техногенный» Н-смектит (Томская область)

Адсорбция Cs на монтмориллоните

Адсорбция Cs на Таганском монтмориллоните

Адсорбция Cs на Таганском монтмориллоните

Концентрация катионов в растворе при замещении Cs

Концентрации	Адсорбированный	Замещенные катионы, мг*экв/100			א Концентрации Сs ده % от А _{тах})
(мг/л)	Cs⁺, мг*экв/100г	Na⁺	(Ca+Mg) ²⁺	сумма	
50	4.7	1.4	9.0	10.4	
100	8.9	2.0	9.2	11.2	
200	17.3	2.9	8.9	11.8	
300	24.8	3.1	10.2	13.3	
550	42.4	3.1	17.0	20.1	4 5 6 7 8 9 10 CuKa 20 (°)

Бентоонитовые глины являются наилучшим природным сырьем для обеспечения безопасности пунктов захоронения РАО и важным компонентов ИБ.

Смешанные глины поликомпонентного состава также могут использоваться при строительстве ПЗ, но важным является надежность обеспечения безопасности, что в каждом отдельном случае должно рассматриваться отдельно.

Работы выполнены при поддержке Фонда фундаментальных исследований (РФФИ) и Российского научного фонда (РНФ).

Образцы любезно предоставлены ОАО "Бентонит".

Особая признательность за помощь в проведении исследований: Н.с. Закусину С.В., н.с. Доржиевой О.В., доц. Тюпиной Е.А., с.н.с. Кулешовой М.Л., вед. инженеру Малашенко З.П., ст.н.с. Бычковой Я.В., н.с. Якушеву А.И. и т.д.

Спасибо за внимание!