Long-Term Safety Assessment for the planned Bulgarian Surface Disposal Facility for Low- and Intermediate Level Waste from NPP Operation and Decommissioning

B. Haverkamp

DBE TECHNOLOGY GmbH, Peine, Germany

ATOMECO 2017

INTERNATIONAL FORUM-DIALOGUE AND EXHIBITION

November 21-22, 2017

KIDSF-Project: Technical Design and ISAR Preparation for National Disposal Facility (LLW & ILW), Bulgaria

assigned to Consortium of

Westinghouse Electric Spain SA, DBE Technology GmbH (Germany) und ENRESA (Spain) with support by local Sub-contractor EQE Bulgaria AD

• Objective of the project:

- Technical planning, including the preparation of the Intermediate Safety Assessment Report, of the NDF for LILW in Bulgaria.
- Preparation of main documents for construction license
- Scope of work of DBE TECHNOLOGY GmbH:
 - Project management.
 - L-T-Safety Assessment and Environmental Impact Assessment.
 - Detailed technical design of the selected option.

____ Location of NDF _____

Main Features of Disposal facility

- Conceptual Design of NDF closely related to EI Cabril Repository in Spain
- Vault type repository (66 vaults)
- Waste will be conditioned in 2 x 2 x 2 m concrete containers

- Vaults will contain 4 x 8 x 9 containers
 Total: 19000 containers with 150000 m³ conditioned waste
- Filled vaults will be closed with concrete slab and a temporary sealing cover to prevent infiltration until the end of operation
- After end of operation the repository will be closed by constructing an engineered cover with an integral clay layer as main sealing

— Artist View of the NDF — —

— Repository Final Cover —

NDF – Projected Inventory

Radionuclide	Initial total activity (Bq)	Radionuclide	Initial total activity (Bq)	Radionuclide	Initial total activity (Bq)
Ac-227	0.0 E+00	I-129	8.6 E+07	Ra-226	0.0 E+00
Ag-110m	1.7 E+12	Mn-54	1.1 E+12	Sr-90	3.4 E+11
Am-241	1.3 E+10	Nb-94	3.3 E+09	Tc-99	1.8 E+09
C-14	2.7 E+12	Nb-95	3.5 E+11	Th-229	0.0 E+00
Cm-242	9.8 E+07	Ni-63	4.4 E+12	Th-230	0.0 E+00
Cm-244	3.0 E+09	Np-237	0.0 E+00	U-233	1.8 E+07
Co-58	7.7 E+11	Pa-231	0.0 E+00	U-234	1.0 E+08
Co-60	1.5 E+13	Pb-210	0.0 E+00	U-235	1.8 E+07
Cs-134	2.0 E+13	Pu-238	5.2 E+09	U-236	0.0 E+00
Cs-137	1.4 E+14	Pu-239	4.35 E+09	U-238	5.3 E+07
Fe-55	1.4 E+13	Pu-240	4.35 E+09	Σ α emitters	3.0E+10
Fe-59	7.9 E+11	Pu-242	3.7 E+07	Σ Total	2.0 E+14

Scenarios Considered for Long-term SA

- For the normal long-term evolution of the NDF, the only release pathway for radionuclides that has been identified as relevant is the groundwater pathway.
- The same is valid for the alternative or accident scenarios that have been developed for the long-term assessment, apart from the human intrusion scenarios.
- Scenarios selected for the long-term assessment:
 - Normal evolution (groundwater use via well)
 - Human intrusion (Road Construction and Residential Scenario)
 - Earthquake
 - Climate change (change towards wet or dry climate)
 - Crash of airplane

Main Assumptions Normal Evolution Scenario

- Climate conditions remain essentially the same as today.
- Closure of the repository will be followed by a period of 300 yr of active institutional control (with maintenance of engineered cover)
- After the end of institutional control, the infiltration control system will be backfilled and sealed.
- It is assumed that the total inventory is accessible to infiltrating water from the time of failure of the containers (aver. lifetime 60 yr)
 - No radionuclides are bound in any kind of waste matrix
 - All infiltration supposed to mix with complete waste volume.
- Geosphere conditions will remain as today.
- Construction, closure and performance of technical barriers will be according to design.

___ Conceptual Model - I ____

Conceptual Repository Model

Examples Computer Model =

GoldSim Simplified <u>Nearfield</u> Model for NDF

Dr. Bernt Haverkamp ATOMECO 2017, Moscow

— Interim Results - Long-Term Calculation

Cumulative Advective and Diffusive Flux of U-238 from Concrete Bottom Slab into Loess-Cement Foundation

Relative Importance of Diffusive and Adjective Fluxes

Dr. Bernt Haverkamp ATOMECO 2017, Moscow

___ Interim Results - Long-Term Calculation **_**

Total Activity Concentration along Groundwater Pathway Saturated Clay - Upper Aquifer - Lower Aquifer

Release of Activity

Total Cumulative Release of Activity from Repository, Upper Aquifer and Lower Aquifer

DBE TECHNOLOGY GmbH

— Total Annual Dose – Normal Evolution —

Main results of Safety Assessment

- Peak dose rate with 0.87 µSv/a clearly below regulatory limit of 0.1 mSv/a
- Results of Sensitivity Analysis considering uncertainties show no critical boundary conditions or assumptions where changes are likely to have significant negative influence on radiological impact.
- Results of Alternative Scenarios are also clearly within regulatory limits:

Maximum Total Annual Dose for Scenario 1 to 5						
Scenario		Peak Dose Time of peak dose				
1	Normal Evolution	0.873 µS/yr	5820 yr			
2.1	Human Intrusion – Resident and agriculture	38.7 µS/yr	300 yr			
2.2	Human Intrusion – Road construction	3.16 µS/yr	300 yr			
2.2	Human Intrusion – Drilling	0.634 µS/yr	300 yr			
3	Earthquake	6.86 µS/yr	1450 yr			
4.1	Dry climate	0.884 µS/yr	7960 yr			
4.2	Wet climate	0.810 µS/yr	4210 yr			
5.1	Explosion of car on road	Conservatively covered by 5.2				
5.2	Airplane Crash	5.73 µS/yr	2320 yr			

Project on Construction assigned to consortium lead by NUKEM Technologies (Rosatom Group) in July 2016

License for Construction - 9th June 2017

Groundbreaking Ceremony - 26th August 2017

© www.dprao.bg

Responsibility for Generations

