Review of a completed Decommissioning Project:

The Eurochemic Reprocessing Plant in Belgium

Bart Ooms and Robert Walthéry
November 10 2015
Content

1. Introduction
2. Eurochemic’s history
3. Decommissioning strategy
4. Applied techniques
5. Safety aspects
6. Material management
7. Planning & costs
8. Conclusions
Eurochemic
• 181 t of natural and slightly enriched uranium fuels (<4.5% initial U235-enrichment) from various experimental and power reactors

• 31 t of high enriched uranium fuels from testing reactors

677 kg Pu

1363 kg U
Rehabilitation of Eurochemic

- ‘Rinsing’ of the installation (ALARA)
- Radiological status in 1981
 - Surface Contamination levels up to a few 100 Bq/cm² in alpha and beta-gamma
 - Contamination in depth
 - Hot spots up to a few 10’s mSv/h => hands-on
 - No activation
Pilot Project
Main lessons

- Emphasis on decontamination of:
 - Metal components
 - Concrete structures
Unique strategy

- Avoid any spread of contamination
- Far reaching decontamination in view of unconditional release
- Minimal quantities of radwaste
- Optimization of recycling and exhaust opportunities for reuse of valuable components
Rehabilitation of Eurochemic

- Relevant data:
 - Length 90 m, width 27 and height 27 m
 - Volume: 56,000 m³
 - Concrete volume: 12,500 m³
 - Concrete surface: 55,000 m²
 - Metal: 1,500 ton

- 7 floors, 40 large cells

- 106 cell structures
Far-reaching decontamination

New technologies, ergonomic tools
Decommissioning strategy

- Rinsing program
- Removal of systems and components
- First decontamination of the structure
- Removal of embedded piping
- Decontamination of the structure
- Release measurements

Brownfield
Far-reaching decontamination
Doorgedreven decontaminatie
Dismantling
SAFETY

- Focus on accelerated risk reduction

- Safety of our in house staff and our contractors is and has always been a top priority
Safety first!

- Dose rates
 (average < 2 mSv/year.person over 1990-2013)

- Contamination risks
 (Protective clothing, silicon mask)

- Conventional safety
 - Circumstances comparable to construction industry
 - Hand-arm vibrations
Radwaste management
Results

- Production rates
- Planning (man.years)
- Budget & costs
Production rates for concrete

- Demolition included

![Diagram showing production rates for concrete](image-url)
Production rates for metal

- **Demolition included**

![Diagram](image.png)
Results: man.year

- Initial estimation: 400 man.year
- Final result: 570 man.year

Why? :
- Inventory differences
- Decontamination in view of free release
- Labour intensive release measurements and stringent release procedures
Results: budget, costs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M€1992</td>
<td>M€2013</td>
<td>M€2013</td>
</tr>
<tr>
<td>Decom. Costs</td>
<td>54,80</td>
<td>82,56</td>
<td>166,18</td>
</tr>
<tr>
<td>Radwaste Costs (2008)</td>
<td>68,70</td>
<td>103,45</td>
<td>44,12</td>
</tr>
<tr>
<td>Total</td>
<td>123,50</td>
<td>186,01</td>
<td>210,30</td>
</tr>
</tbody>
</table>

Far-reaching decon in view of release

Smaller radwaste quantities

End result remains nearly status quo!
Conclusions

- **Belgoprocess has mastered the complex work of decommissioning a reprocessing plant within stringent safety procedures and rules;**

- **During 25 years a lot of knowledge and experience has been acquired in the areas of technology, planning, budget ans human dynamics;**

- **Excellent results were obtained due to an unique applied strategy with emphasis on clearance.**
THANK YOU FOR LISTENING